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Abstract —The plastic post-bifurcation and imperfection sensitivity behaviors of clamped circular
plates arc analyzed using the systcmatic perturbation method. It is found that there is a second-
order term of post-bifurcation defiection expanded in terms of the eigenmodal amplitude, but no
corresponding term for elastic postbuckling. High order post-bifurcation terms are calculated to
improve the analysis. The influence of geometrical imperfections on the load-bearing capacity of
clamped circular plates is expressed analytically. The results of using this method are compared
with those obtained by the finite element method.

NOTATION
u,. b, parameters appearing in cgns (36) -(38)
o end point of the unloading interval along the thickness
EEE Young's modulus, cffective modulus, tangent modulus
Cun straing
; ath-order Bessel function
k liest zero point of J,

[ A plastic moduli, their plane stress expressions
Lo P clastic moduli, their plane stress expressions

shu

M., " bending moment

m a parameter defined in eqn (49)

N4 resultant stresses

", i, normal of the loading surface, its plane stress expression
plate radius

r radial coordinate

! plate thickness

u radial displacement

w plate deflection

plate imperfection

nth-order Neumann function

lateral coordinite

a parameter defined in eqn (39)

length of unloading interval along the thickness

imperfection amplitude

a parameter quantifying the unloading area

cigenmodal amplitude

Poisson’s ratio, cffective Poisson's ratio

coordinate variables of inner ficld

coordinate variable of outer ficld

deflection amplitude at first unloading

loading parameter

stresses

a.d bifurcation load, first unloading load

a,.q, cquivalent stress, yicld stress

Lo v F..... quantitics calculated at bifurcation

Lop.m. 6. E. ... quantitics calculated at first unloading
1) n

W . N o M. ... quantitics of inner ficld

0O an ‘".’ "['
w, u, N, M, ... quantities of outer field

QA= =SS SR e 3,
<

a

wotiy d,.... nth-order terms of w, u,9,....
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I. INTRODUCTION

It is a common observation that clamped circular plates will bifurcate after they are
deformed in the plastic range. In earlier studies. Hutchinson (1974) made post-bifurcation
analyses on the basis of his post-bifurcation theory. In his plastic post-bifurcation theory,
he provided a clear picture of the post-bifurcation behaviors of structures in the plastic
range for the first time. His work. however, did not include the imperfection sensitivity
and higher order asymptotic analysis. Needleman (1975) calculated the post-bifurcation
behavior both analytically and numerically. but the imperfection sensitivity was examined
only numerically.

This paper presents a new systematic perturbation method of analyzing the post-
bifurcation and imperfection sensitivity of clamped circular plates. The main feature of the
analysis is the use of a matched asymptotic expansion of fields inside and outside the
unloading zone, the boundary of which changes with the increase of applied loading. The
radius of the unloading circle on one of the outer surfaces of the plate was used as an
expansion parameter. Higher order asymptotic post-bifurcation and imperfection sensitivity
analyses were carried out. New aspects of the plastic post-bifurcation were also explored.

The systematic perturbation method is an improvement on the asymptotic method
used by Hutchinson in his general plastic post-bifurcation theory. A general presentation
of the method can be found in Su (1988) and Su and Lu (1990a,b).

2. BASIC EQUATIONS

As shown in Fig. 1, a clamped circular plate with radius R and thickness ¢ is subjected
to & homogencous loading, —at. A cylindrical coordinate system is established, with the
polar plane (r,0) lying on the midplane and the z-axis normal to it. Here, attention is
restricted to axisymmetrical deformations. The radial displacement is denoted by u(r), and
the deflection by w(r). The strain rates é,, (2. ff = 1,2) are

Gy =6, =0, +WW,~2W,
€4y = 6y = /r—2ow,/r n

(;15 = ("2] = (.',M = 0.

If J, flow theory is then adopted, the constitutive relation is

L iy for unloading )
d g = . . .
o L,y.é, forloading, 3)

where &, and L,,,, are the elastic moduli and plastic moduli in the plane stress expression,
respectively. They are related to their three-dimensional counterparts by
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Fig. . Circular clamped platc unloading arca.
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& e = yzﬂyv’gmssymn/gnn- I:xa.n = L«spv*sznL,nn/an
For the isotropic material now considered, we have

E

-?ijki |+

[ (01k511+0tl(5/k)+ 61] 6&1] (lv j’ kvl = 1’3) (4)

3 E 1/E—/E
21+v B +v)/E+1/E~1/E]le?’

La’jld = yijid" (5}

where E, is the tangent slope of the uniaxial stress—strain curve, and

-

0! = 35Sy Sy = 0= 0udy.

as

The rates of the resultant stress N,; and bending moment M, are defined as

12 42
Nxﬂ = J. dil‘d:' ‘A;!tﬁ = j ) d’_,a:d:. (6)

42

The rate form of the virtual work principle is
R . - O .
j [N,8u, + Nydujr— M.Ow,, +(Nw, = Myfr+ N, )ow Jrdr = dtou(R). (N
(1]

A perfect plate deforms homogencously with g, = g, = ¢ before bifurcation. Its plastic
constitutive relation can be expressed as

£

dr = *_:‘.'3 (ér + 5{;8) . J.H =

E
1—v

5 (éy+76,) 8)

where £ and ¥ are the effective Young's modulus and Poisson’s ratio, respectively :
EIE =\ +(EJE, ~1)/4, ¥ = (E/E)v—(E/E ~1)/4]. 9
The plastic bifurcation load and cigenmode of the plate are
o, =k E.r}/[12(1 =7} R?) (10)
= —[Jotkr) = Jo(R)/[1 = Jo(R)], (tn

where J, is the nth-order Bessel function, & is the first zero point of J,, and £, V. are E, ¥
calculated with g, = g, = &, respectively. The minus sign before the eigenmode in eqn (1 1)
is used to make sure that the plate bifurcates downwards. According to the plastic bifur-
cation theory (Hutchinson, 1974). the plate will unload at the point (0,0, —¢/2) when it
also bifurcates. In the process of post-bifurcation loading, the unloading will extend from
the point (0,0, —¢/2) in both the r and = directions. As the unloading is axisymmctric, the
intersection of the unloading area and a plane parallel to the midplane of the plate will be
a circular region around the center, if the two are intersected. Of all thesc unloading regions,
the one with radius {R on the lower outer surface - = —1/2 will be the largest. For the part
of the plate with r 2 {R, the plate deforms plastically through the thickness. Equation (6)
therefore becomes
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(I

2] (n "2
Ny= J' [:zlfuvéuv ds, Mxﬁ = J‘ [‘zﬂuvéuv: d- (12)
-2

-2

where the symbol “II”" represents the part of » > (R which is referred to as the outer field
in the following statement. In the portion of the plate with r € (R, referred to as the inner
field. there is an unloading interval along the :-axis for every specific r. The unloading
interval will be e [— /2. d], where d is defined by the neutral loading condition

[ﬁzﬂ(r* Z)é:ﬁ(’v :)Jl:sd = ﬁ;ﬂézﬂ(rv d) = 0- (|3)

where 77,4 is the plane stress expression of the normal of the loading surface. /% is the A,y
when the plate bifurcates and 7;; = —d,4 in the present case. Equation (13) then leads to

,+w,w,+u/r—dr)[w, +w,/r]=0. (14)

Since those points of ze[—1/2, d] deform elastically, and those of =€ [d. ¢/2] plastically, we
have

i) d ‘e
Nxﬂ = j -(/’l[fuvéuv d: +J; L:I‘uvéuv d:
-2 1 <

(forr £ {R), (15)

4 2
My = J' £ bz ds +J Lop @,z dz
-42 d

where 1™ represents the inner ficld.

As (R extends with the increase of the post-bifurcation loading, the sizes of the inner
and outer ficld change continuously. However, for a specific loading moment, (R is a fixed
quantity. By substituting eqn (12) and eqn (15) into the equation of the virtual work
principle, eqn (7), and performing integral transformations for r = {R and r < (R, scpar-
ately, we have the following three scts of equations.

(i) The governing equations of the inner field

[ w W m U]

1 [Mr.i?+ (2A2r.r'" A;[ti.i)/f] + [/\7,"{’.;;‘*‘ Nl)‘;’.i/':
m m
J + N W o4 Ny 4fF] = 0,
Mmoo
N+ (N, =Ny [F =0,
M M

L M(0) # o0, My0) # o0, &0)=0, :(0)=w,0)=0
0<F<y. (16)

(ii) The governing equations of the outer field

) awap un un
VM, e+ QM= M) [Fl+ [N W+ NoW /P
ap _ooan
4 + N,‘i"ﬂ‘i‘ Nﬂ“’j/’:] = O,
an an - an

Nr,i+(Nr- NU)/F= 0’
wA)=w(l)=0, w,(1)=w()=0

[f<Fgt). (17

(iit) The continuity conditions on 7 = {
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[{3)] m (1n (an (0)] [{1]

MAC*Y = MCT) M) = My(C*) = M) — Mo(C),

W) = WET) WCT) = ws(ET), WET) =R

an I
dCr) =4a"). N.CH=NE), aC*)=a). (18)
In the formulae above
- 3 - - = Rz .
H=HR/I“. W= w/t, rzr/R, ezﬁa-;é.elﬂ'
< . Ec l3 - . / T Ec
N= N,ﬂ/['i"::vfs —R‘f:], A/[,ﬂ'-ﬂr’lag ‘i—z-k*i"—l-—:'v?cz' (|9)

are nondimensional quantities and {~ and {* in eqn (18) correspond to the approaching
of { from the inner and outer fields. respectively.

The boundary between the inner field and the outer field, 7 = {, is defined by setting
d= —1/2ineqn (14),

[+ W 0 o4 i F 4+ Y60 5+ 4 /F)]lse; = 0. 20

Obwiously. the governing equations of the post-bifurcation problem, eqn (14) and eqns
(16)-(20), constitute a moving boundary problem.

3. PLASTIC POST-BIFURCATION ANALYSIS

Elastic unloading plays a crucial role in plastic post-bifurcation analysis. Its existence
and extension change the governing equations of a structure from a fixed boundary problem
to a moving boundary problem. When we concentrate on the initial stage of post-bifurcation
deformation, the value of §, which churacterizes the size of the unloading area, is small.
The inner ficld behaves like a boundary layer, To obtain a solution in the boundary layer,
an expansion of scale is required. On the other hand, the continuity condition requires a
systematic transformation in the outer field as well. Following the scheme of Su and Lu
(1990b), we complete the plastic post-bifurcation analysis in three steps.

In the following asymptotic analysis, { is used as the perturbation parameter and the
time. The discussions are based on the nondimensional quantitics as defined in eqn (19).
The burs over the nondimensional quantities are omitted for simplicity.

3.1. Boundary layer analysis of the inner field
The governing equations are shown in eqn (14) and eqn (16).
The boundary layer transformation

E=rff, =r=0, {=0; r={ (= (2h

changes the extending area re [0, ] to the fixed region, £ €0, 1]. The governing equations
in terms of the variable r, can be transformed into equations in terms of variable ¢,
accordingly.

Since the unloading area of the bifurcated circular plate is developed from a point, the
lowest non-zero order terms in the expansions of velocities &, w should be of the order five
(Su, 1988): so wc expand

() = W(E L) = Wo(E)0S + W (D54 - @2

(r.0) = WED) = Ue(O + ur O+ - 23)
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_ oLz,
Ly, =L+ —a}-ﬂ‘— (65, —05)+ -+ (29)
o lo=a,
0, ) =d (E+d (O + -, (25)

where ¢ is the length of the unloading interval in the thickness
o =dt+1)2. (26)
Note that as § = 0 for r = {, d, in eqn (25) should satisfy
d() =0, (n=1). 27N

Substituting the above expansions into the transformed gover(rli)ing equﬂ)tions which are

expressed in terms of the variable &, and using the formulae for N,; and M, in eqn (15),
we can obtain perturbation equations by following the conventional asymptotic procedure.
The solutions to these perturbation equations are

m , M s
we(8) = Ag+Bo&°, wi(d) = A4,+B,E°, ...
n n

u($) =0, u{&) = —By¢....

di(§) =0, d:() = (1=8),.... (28)

Since the boundary conditions on & = | are not given, there are two unknowns in the
solutions of each order asymptotic analysis.

3.2. The asymprotic analysis of the outer field
The governing cquations of the outer ficld are shown in eqn (17).

The systematic transformation

§=1% wrmr £=0; rm1 ge )

transforms the shrinking region re({, 1], to the fixed region £e[0, 1]. Expand rates of
displacements as

(. 0) = W(ED) = WO+ WA+ - (30)

() = HED = Un O+ Ur(EE+ . 31

Here the method of Solution-Transformation (Su and Lu, 1990b) is used for the

) (n L - .
solutions of w and «. The field functions in terms of the original variable r are expanded
first as

W(r,8) = we(NC* +wa(r)+ - - (32)
u(r,{) = ug(r)* +u(r)¢+ -+ 33)

By solving the governing equations in eqn (17) with &(r) and w(r) expanded as in eqn
(32)-eqn (33) using perturbation, we obtain (Su, 1988)
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w(r.0) = [a:(0) +au (D] [Jo(kr) = Jo(k)]

Jolk
-+%§{ Jikr)+ “’[nwﬂ Yum§+0«“)(w)
i(r.0) = bOr+0C", (35)

where Y, is the nth-order Neumann function, and

@) = al’ +as 0%+ +a, {"° (36)
ai(Q) = a " +a L+ +a ('t 37
bi(Q) = bel* +b:L0+ - +b,,("° (38)

2
Y —aktba, (09

o = [l’(l HTIET+ Q) +Y )1 +V) o5 k‘](axb:) + 57

where a,. ¢, and b, are the integrations of d,. d,, and 4,, and
{—vy

F(1+v\ o dT,
‘/"‘“““”[ -(1—")7*—?‘* do (1 +v)a,

T=E/(1-v), T,=E/1-9. (40)

]. Y= = HT=T7) e

Changing the variable r in the solutions of & and w in eqns (34)-(35) to the variable &, by
using egn (29) and regrouping i and w in the form of eqns (30)~(31), provides

an

ue( 5)“ 41)

(n

M(s) = “6[-’9(]*’5) Jo(K)].

(n

wi(§) = as[Jo(kd) ~ Ju (K] +ask(E~ 1), (kE)
42)

where g, and b, are determined by cominuity conditions on & = 0,

Since w(r) issingularat r = 0, w.(f) (r: 12), from the procedure above will include
the terms of In {. This is incorrect, because u,,(f) is defined as a function of £ only by the
expansion in eqn (30). Strictly spcaking, W should be expanded in a series of {", {"In{
(n=1,. ) However, for our problem (w,,, 2 12, is used only for the purpose of deter-

mining w n < 12. The terms of In { will be eliminated and therefore, the final results will
not be affected.

3.3. The connection of the inner and outer field

In terms of the variables & and £, the continuity conditions in eqn (18) are conditions
for the inner and outer ficld solutions when ¢ = | and & = 0, respectively. The unknowns
in the two field solutions a,, b, and A,. B, can be determined by substituting solutions of
the respective field into eqn (18), and comparing the terms of equal powers of { in each
equation.

The final results obtained by above procedure are
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r

6 Ty k: - k2 -
EIEAC) +{%[l-lo(k)]—2—40°c'} {‘—’ﬂn —Jy(k)) = 5’

3 k? . a,s 3k%a a ;
+ 15 4,0654}5'0'*{7';[ -’o(k)]+an+[12806(m—1)——I—OEk ]s‘

31 3k* o .s agk® e
we= J +6“i ‘—ﬁ[—°8—ao(m—|)+ask] YE Bm—=1)—1]5%p¢ "+ -
O<r<i{e0<i<) @)

_ a . f_s_.,s Jolkr)—Jy(k) '{ﬂl:;|:+"'}
[ j°(/‘)]{6 N } I—J,k) T %

Jo(k)
Y, (k)

{J (knyr+ o7 [Yolkr) — Yo(k)]}'*' s ((Srgle0<ES) 94)

.

k* a 1
u-u(r)+[ I\C"+—(as )C“ (a,', 4“L +‘6§k‘>g'“+...],+...

(45)
S ae. | a, ., t y Ay,

=1=3 ;. "0 vs ,- b2 ) $ 2 I R N . v

ojo. =1 -(|+h)[6s +8("x 4/~)s +|0<”10 4/\ +64/\)s + }-
(46)
k¥ (k) T—- 7*/ [k dT, 31-«,“ T-T; 47
“ET6T Sk T %R do .., Tarp TR @7

8 (l \7‘.)(|—V) Jll(k) 2
ay = Ya k= Laki(m, ~ 1)+ s [+v Y,(k)u‘" (48)
where af, is o constant, and
__E -7 _~£.-.L—,i“: 49
"EISVETE =M= E (49)
Bia=124(0 +V )k +2Q¢, +¢ )(I+v)-k‘ —-z—p—(l— v,)k* ‘jé ki (50)
' LT R? 24 12°

4. IMPERFECTION SENSITIVITY ANALYSIS

All the quantitics in this section are nondimensional as shown in eqn (19). The
imperfection w is nondimensionalized by ¢. The bars on the nondimensional quantities are
omitted.

The imperfections discussed are in the form of

W= —e[Jolkr) = Jo (k)1 = Jo(K)]. G

If € is infinitesimal, the plate will deflect only slightly in a fairly large range of loading.
This range can include the period when the whole plate deforms plastically, until unloading
starts at the point (0,0, —/2). The deformation of the plate in the range will be approxi-
mated by a homogeneous one as if the plate were perfect.
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The deformation of the plate before the occurrence of unloading is a hypoelastic one.
Hutchinson (1974) presented formulas for the load 4. and the deflection W, when the
unloading just begins:

W= —=E[Jo(kr) — Jo(k))/[1 = Jo (k)] (52)
€ = [Lp/A,}"e"? (53)
la. = 1—[1,p/A]"%"?, (54)

where 2., 4; and p are parameters defined by plastic bifurcation analysis (Hutchinson,
1974). It is noted that £ and ¢ — g, are proportional to &"/2.

Since the plate is assumed to deform approximately like a perfect one before unloading
up to ¢, we can write

E .
= (¢qs+vé,) (59

[}

dr = 2 (er+‘7el))v d(l =

l—v

where £, v are effective moduli for ¢, = oy =06.

When ¢ > 4. the unloading area begins to extend from the point (0.0, —¢/2). The basic
cquations governing the post-unloading deformation can be obtained in the same way as
shown in Scction 2 for the post-bifurcation analysis. Nearly all the equations are the same.
The only change is that the strain rate in the radial direction is affected by the imperfection

e =u,+w W, +Ww W, —2w,, (56)

[1}] [L)]
and  the cquilibrium eqns  (16) and (17) should have (N, W, + Nyw,/r) and
(N, + N, /r) added to their left sides, respectively.

The governing equations for the post-unloading analysis of the imperfect plate also
constitute 1 moving boundary problem. The asymptotic analysis of Section 3 can be carried
out in almost the same way, with minor adaptations as explained in the following.

First, the post-unloading deformation is not only related to the loading, but also to
the deflection of the first unloading W, or £'/? by eqn (53). So, a field function f(r,{,£"?) is
of two parameters, and should be expanded into

S 8E2) = Lo+ 150000+ +e L+ 15+ -]

+e[ AN+ LEO+ 1+ -+, (5T)
where r should be replaced by ¢ for the inner field, and € far the outer field when fis the
function of the respective field. Also, ¢ is infinitecsimally small by definition. When ¢ appears

together with { in the asymptotic analysis after substituting expansions of eqn (57) into the
governing equations, it is difficult to determine asymptotic orders. So we write ¢ as

e=a’{"? (58)
and substitute it into eqn (57) to get
S = £OC+ 50+ finalis+ - (59)

When expansions of the above form are applied to the governing equations, per-
turbation equations can be obtained with a being regarded as a fixed quantity. The per-
turbation equations are in the form of
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¢"[ﬂ~ﬂ—l""s :-hﬂl T ]+a¢"[j‘,,,f:, [ LI ﬂv- n 7...-]=0 (60)

where ¢" and " are linear operators. Since the imperfection may be of different sizes, the
a can be treated as an independent variable proportional to ¢'/2. This leads to

Lo Suteois faienn =00 Y[ frooi i fooe. ] =0 (61)

These are the perturbation equations when the imperfections are included.

Next, as a result of the assumption that the plate deforms homogeneously when ¢ = 4,
the plastic moduli denoted by L., are equal everywhere in the plate. The plastic moduli
after unloading can be expanded as

_ A 0L,
L:ﬂuv = Lzﬁuv + —ﬂ—“

0as, ﬂ:d(a&? ~Oa) o (62)

When the above expansion is applied in the asymptotic analysis, the lowest order per-
turbation equation of the outer field is reduced to

I E 2, ke E
“BirRCTw et

(AR (63)

Q.

It can be seen from egns (53)-(54) that ¢ and € do not satisfy eqn (63). It is assumed
that eqns (53)~(54) and cqn (63) arc approximatcly compatible once ¢ is small enough, so
that higher order calculations can be carried out. |

Finally, it is usually cumbersome to caleulate Lapo OLsps/ 005, -0 €lC. since they arc
related to . On the other hand, we notice L,,,,“, l:,,,,,, = O(L*). After getting the final results
of the imperfection sensitivity analysis, we use L,,,,,,, etc. in the place of L., cte. This
simplifics the calculation.

The results of the imperfection sensitivity analysis of clamped circular plates are

ay

w(0)=—£+[l—lo(k)1{‘—‘6—‘! o oy } (64)

- l é t: 6 k2 8 3 u Af2v2
0’—0’+E|—_—V:R2 { O+ (“x 4“6)( + @+ (65)

where w(0) is the deflection of the plate center, and

. mkS Y (k) T-T, k? 1? dT, 31—7 T-T,

R R R Sy ¢ Y ey
167 Jok) T, 24 R? do |yue 4 14v T.

, 2 i n2e.2 l—v PRS0 I

[ U O A0 U I —_ — — iy2

ay = aik* —jalk*(m I)+7th I+v(l V) Y.(k)(a")

i _ 32 Jok) ay ( _.é) [+

2T Y (k) =1 72 1= To(k)

m=f 20 (66)
l1—v: F

It is obvious that when £ = E.. rit = i1, we have
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ai6 = a69 aiﬂ = 681
where a,, a, are from eqns {(47)-(48).

5. NUMERICAL EXAMPLE AND DISCUSSIONS

The plastic post-bifurcation behaviors of clamped circular plates are quite different
from the elastic postbuckling behaviors of the same structures. This is clearly illustrated
when the results of eqns (43)—(46) are expressed as expansions in terms of eigenmodal
amplitudes. For this reason the eigenmodal amplitude is denoted by n, where

n=—[1=Jo(O)][1asl® +iay(®+ -] 67)

from eqn (44). By substituting the inversion of eqn (67) into eqns (43)—(46), we get

(] Jolk)=Jo(k) | ak® 6 }
{" —Jot) Tagog MM D e (<0 (68)

_ Jotkr) = Jo(k) {ﬂzh!‘ : +}

W=

1=7,(%) %
Jo(k
x {J,(kr)r+—°(—¢)*[Y‘,(kr)- Yo(k)]+ } >0 ©9)
. Y!(}\)
ola. = V+Ain+im* > +im™ + -+, (70)
where
_ 3+ Ui NPT P
/.| R I_Ju(k)‘ ]'2 -_— 32 ahk h . 2_‘ — —3(*+V‘.) |60k + 640 hl
hl = {—6/[(10—0610(/{)]}”6. (7')

The result of eqn (69) shows that the second-order term of the post-bifurcation
deflection expanded in terms of the eigenmodal amplitude is not zero, unlike that of elastic
postbuckling (Thompson and Hunt, 1973). This is caused by the unloading in the center,
as the singular Neumann function expresses itself.

A 5/3-order term immediately follows the 4/3-order term in the load—deflection relation.
These high order terms will play important roles once the post-bifurcation deflection
develops to a certain degree. This is in contrast to the case of the elastic postbuckling, where
the load-deflection relation can be expanded in integral powers of the buckling mode
amplitude. It is casy to understand that high order asymptotic terms are much more
important in the plastic post-bifurcation than in the elastic postbuckling.

Another aspect of interest is that the first-order expansion of the deflection in the inner
field is not the ecigenmode itscll, as in the case of elastic postbuckling. It seems to be a
contradiction. Actually this is the natural outcome of a moving boundary problem. As a
result of the extension of the unloading area, the governing equations are changing. The
first-order asymptotic approximations to these equations are changing, too. In this regard,
the validity of the assumption that the first-order terms in the expansions of the post-
bifurcation deformation should be the eigenmode itself, is suspect as far as the plastic post-
bifurcation is concerned (Su, 1990).

To further understand the plastic post-bifurcation and imperfection sensitivity
behaviors of the clamped plate, a numerical exampile is given here.

The geometrical and material parameters of the example are the same as those adopted
by Needleman (1975). The uniaxial strain-stress relation of the plate is
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o/a, (e<0,).

e/[e.v = (72)

1 . 1
;(a/a,.-) +1- . (6 >a,),

where e, and o, are the yielding strain and stress, respectively, and n = 12. The ratio of
plate thickness to radius is

(t/R)* = 24(1 =ve,/k, v=1/3. (73)
From eqns (72) and (73), we obtain

oo, = 1.123, EJE; =3.5826, E, =0.6067E, rm_=0.7847
d7,

do |sa0,

T; =035107E, v.= —0.1897, e, = —4.576.

The coefficients in eqns (64)-(65) are calculated after replacing If,ﬂ,,,. etc. by Ly,,.. ete.

a, =ay, = =3.3892, ay=ay =262, di=—0.144

E=03118:"2, ¢ =0,-0.53930.6"".
So, the results of the imperfection sensitivity analysis are

w(0) = —0.3118:"2—-0.101¢"*(*—0.7906* +0.4593,* + - - - (74)

olo, = 1-0.5393e"2+0.175c2 02 + 1.373(* —4.576,* + - - -. (75)

In eqn (70), the results of the post-bifurcation analysis of the perfect plate become
ala, = 14 1.733n~5.154n"> +3.224n%°, (76)
Its maximum is obtained when n = 0.0412, and is
e, = 1.0l40,. (n

Hutchinson (1974) and Needleman (1975) calculated the load deflection relationship,
truncated at 4/3-order for the circular plate, on the basis of Hutchinson’s plastic post-
bifurcation theory. Within the 4/3 order, their results are almost the same as ours. However,
there are inherent difficulties in extending Hutchinson's general theory to higher order
asymptotic analysis (Su, 1988, 1990). If the 5/3 term in eqn (76) is not included, the
maximum is ¢, = 1.0070,, obtained at 5 = 0.016. Compared with Needleman’s results
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Fig. 2. Load-deflection relation, . resuit by finite element method (Needleman, 1975); ----

---, result of present paper including /3 term; — . —. —. — . result not including 5/3 term: A,

first unloading point from (52)-(54); A, first unloading point by finite element method: @.
maximum load of our analysis; x, maximum load by finite element method.

obtained by finite element method, as shown in Fig. 2, the 5/3-order term improves the
result. To be able to carry out the asymptotic post-bifurcation analysis to whatever high
order, is one of the advantages of the method presented here.

If ¢} is ignored in eqns (74) -(75), the equations kead to

w(0) = —0.3118:" 7 ~0.7906* +0.4593(%,
(78)

oja, = 1 —0.5393:" +1.3730" —4.5760".

This is a conservative simplification, Comparing this with the post-bifurcation result,
i.c. putting & = 0 in eyns (74)- (75), we see that if g, is the maximum load of the perfect
plate, the maximam for the impertect plate 6, from (78) will be

Go = G+ (an—0.). (79)

This can be of some significance in engineering. Once the post-bifurcation results, 4,
and the first unloading load, 4, arc obtained, we can get an approximate maximum load of
the imperfect plate from egn (79) without going through the imperfection sensitivity analy-
sis. The sume conclusions in simple models and rectangular beams were presented in Su
(1988).

Figure 2 shows the comparison between the author’s results and Needleman’s finite
element results. Both results show that the geometrical imperfection lowers the load-bearing
capacity of the plate significantly, even when the imperfection is infinitesimally small.

It can be found from Fig. 2 that there is some discrepancy between the first unloading
point by cgns (52)-(54). and that by the finite element method. The discrepancy exists in
the calculation of Hutchinson’s model (Hutchinson, 1974 ; van der Heijden, 1979) too,
though it is not as big as it is here. For this reason, van der Heijden (1979) concluded that
the results from eqns (52) -(54) need refining. A good method that provides a more accurate
first unloading point is, therefore, still a problem.

In the imperfection sensitivity analysis of Section 4, we assumed that the plate deforms
homogencously before unloading. This assumption may lead to large errors when the
imperfection is not small enough. In this case, parts of the plate may even not deform in
the plastic range while the first unloading begins at the center. However, the trends of the
effects of the imperfections on the load-carrying capacity of the clamped plate are well
reflected in our result. If the imperfection sensitivity curves by the present analysis and by
Needleman’s finite element analysis in Fig. 2 were translated to make the first unloading
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point coincide, the differences between the two calculations would be much smaller. This
gives us some confidence. After all, as far as the authors know, the imperfection sensitivity
analysis carried out here is the first attempt to bring the plastic post-bifurcation and
imperfection sensitivity analysis into one analytical frame for real structures.
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